реклама gt-сервис
ДСМ Клуб | DSM CLUB ДСМ Клуб | DSM CLUB

Вернуться   ДСМ Клуб | DSM CLUB > DSM > F.A.Q. > Разное

Разное не вошедшее в другие разделы

Ответ
Опции темы
Старый 24.09.2009, 23:34   #1
Sebastian
 
Аватар для Sebastian
 
Регистрация: 28.09.2006
Адрес: Москва,Ленинградский пр.
Имя: Иван
Авто: EagleTalon 2.0Turbo FWD MT5 & Eclipse G2 Stroker 2.3 turbo AWD MT5
Сообщений: 686
Крутящий момент,мощность и всё,что с этим связано

Крутящий момент...Лошадиные силы... Мы так часто упоминаем эти слова,но знаем ли мы до конца их смысл? Я почти уверен,что многие толком и не представляют разницы между ними. А для начинающего тюнера это вообще надо знать как 2х2! Так что немного просвятимся в этом вопросе :"Что есть что и как это взаимодействует?"

Какую мощность развивает конь в упряжке? Странно, но средняя лошадь выдает при длительной работе только 0,8 л.с.; во всяком случае, именно такой показатель закладывали (и закладывают) обычно в инженерные и экономические расчеты по гужевому транспорту и пр. Считается также, что мужчина средних лет и обычной физической подготовки развивает (опять же при длительной работе) около 0,1 л.с. Немного, но и человек, и лошадь способны напрячься и несколько секунд выдавать гораздо больше – в разы. Конь вытаскивает телегу, застрявшую в разбитой колее, а моторчик внутреннего сгорания мощностью в 2 (две!) л.с. просто глохнет. Крутящего момента не хватило…

Так что же такое крутящий момент и как он связан с мощностью двигателя? Вспомните среднюю школу: мощность определяется произведением силы на скорость (с какими-то коэффициентами в зависимости от единиц измерения) – для поступательного движения. Допустим, тянете вы груз с усилием в 12 кг и со скоростью 1 м/сек. (3,6 км/ч); тогда ваша мощность – 12 кгм/сек. То есть, 0,16 л.с.[Европейская (парижская) лошадиная сила считается 75 кгм/сек. Англо-американская практика вся запутана футами и фунтами, так что британская лошадиная сила (bhp) равна 1,0139 л.с. по «континентальному» счету.]; неплохо. Космический ракетный двигатель развивает тягу в 100 т при скорости 12 км/сек., значит, его мощность – 16 млн л.с.!

Или же мощность определяется произведением крутящего момента [В свою очередь крутящий момент (он имеет смысл при вращательном движении) равен произведению силы на плечо ее действия. Когда к рычагу плечом в 1 м прилагается усилие в 10 кг (перпендикулярно плечу!), то тем самым создается крутящий момент в 10 кгм. Или в 98 Нм – кому как нравится.] на частоту вращения вала – для вращательного движения. Вот и все, остальное – арифметика. Если на валу мотора при 6000 мин-1 (в просторечии оборотов в минуту) замерен крутящий момент в 10 килограммометров, то его мощность равна 83,775 л.с. Или 61,6 кВт – в других единицах измерения [Один кВт равен 1,36 «континентальной» л.с. – даже в Африке.]. Причем неважно, о каком именно двигателе идет речь – о паровой машине, газовой турбине, поршневом д.в.с. или электромоторе; арифметике без разницы.


Момент силы F на плече R; крутящий момент равен F x R

И что же нам,DSMерам нужно? – мощность двигателя или его крутящий момент? Вот притча: вынесли вы на рынок картошку и хотите сбыть ее по 35 руб. за кг. Вроде как главное для вас – хорошая цена. Продали пару кило – по 35, а больше не берут; дорого. Тут-то и выясняется, что для вас важна не столько цена – за кг, – сколько общая выручка от продажи 2 центнеров картошки.

Так и с моторами: нередко автомобилисты заявляют, что для них главное – момент, тяга, а мощность – дело десятое. Ровно наоборот – как в старом анекдоте: дай нам, Господи, мощность, а крутящий момент мы уж как-нибудь сами…

Пусть микролитражный моторчик развивает 10 л.с. при 6 тыс. оборотов. То есть, крутящий момент на его маховике – 1,2 кгм (11,7 Нм). Вам нужно 100 Нм? Ради Бога: ставим понижающий редуктор (с передаточным числом 8,55), – и вот вам 100 Нм на выходном валу [Забудем пока о (неизбежных) потерях мощности в редукторе.]. Причем мощность – за вычетом потерь – остается, естественно, той же. Хотите 1000 Нм? Пожалуйста, возьмите редуктор с передаточным числом 85,5; вопрос подбора шестеренных пар…

Но! При моменте в 100 Нм на выходном валу редуктора его обороты уже не 6000 мин, а только 700 с небольшим. Золотое правило механики: выигрывая в крутящем моменте (в силе), проигрываем в частоте вращения (в скорости). А 1000 Нм вы получите и вовсе при 70 мин-1; слишком медленно. Так вы хотите и крутящий момент, и обороты! И рыбку съесть, и не поцарапаться. Вам нужно продать по 35 руб. не 2-3 кг картошки, а много. Так и скажите: для меня главное – выручка. Для меня главное – мощность двигателя.

Мощность!

Допустим, катите вы на своём эклипсе по ровной дороге с усовершенствованным покрытием; скорость постоянная – 100 км/ч. Тяга от двигателя в пятнах контакта ведущих колес с ходовой поверхностью в сумме как раз покрывает силы сопротивления воздуха и качения покрышек; для вашего авто (с его аэродинамикой, весом, шинами и давлением в них): положим 54 кг. То есть, крутящий момент на оси (при радиусе качения колес, скажем, 265 мм) равен 140 Нм, обороты колес – около 1000 мин, а расходуемая мощность – 1500 кгм/сек. или 20 л.с. С учетом потерь в трансмиссии – от маховика до пятна контакта – от мотора требуется мощность около 24 л.с.; легко.

А чтобы ехать на две «сотни»? При удвоении скорости, силы сопротивления возрастают примерно вчетверо – по квадрату. Иначе говоря, потребная мощность увеличивается в 8 раз (4 х 2) – по кубу скорости! От двигателя нужны теперь 170-180 л.с. на маховике, поэтому далеко не каждый автомобиль способен набрать скорость в 200 км/ч.

Это – при равномерном движении; а если вы хотите еще и разгоняться (или идти на подъем), необходима свободная мощность. Скажем, те же 22,5 л.с. на скорости 100 км/ч – плюс еще 10 л.с. на ускорение физического тела; II закон Ньютона. Или 50 л.с. – тогда разгон энергичнее.

Как видите, и скорость автомобиля, и динамика его разгона зависят от мощности двигателя; как же ее поднять? Держать крутящий момент до высокой частоты вращения вала. Скажем, довести обороты того же микролитражного моторчика до 12 тыс. – при неизменном моменте в 11,7 Нм. Значит, его мощность увеличивается ровно вдвое – до 20 л.с. В общем, тут такое соотношение:

P = 1/716,2 M x n,
где P – мощность двигателя (л.с.) при n мин-1, M – его крутящий момент (кгм) при тех же оборотах. А 1/716,2 – просто коэффициент размерности.

К сожалению, повышать частоту вращения вала поршневого двигателя очень непросто: силы инерции, нагрузки, трение. Ведь если раскрутить мотор от 6000 до 12000об.мин, то силы инерции, которые нагружают детали конструкции, возрастают вчетверо. Нелинейно – по квадрату оборотов. И когда 2,4-литровые «восьмерки» в Формуле 1 развивают максимальную мощность при 19500 мин, то силы инерции при такой частоте выше, чем при 6 тыс. оборотов, вовсе не в 3,25 раза. А в 3,25 х 3,25 = 10,5 раз! Внутреннее трение нарастает еще быстрее (от 6 до 19,5 тыс. раз в 35); к тому же ухудшается наполнение цилиндров топливовоздушной смесью – и крутящий момент неотвратимо падает. Поэтому у каждого двигателя есть точка перегиба на кривой мощности по частоте вращения вала. У каждого своя, но после точки перегиба мощность по оборотам уже не повышается, а наоборот – падает. Не говоря уже об опасности перекрутить мотор и разрушить его стремительно нарастающими силами инерции.

Есть и другой путь: увеличивать крутящий момент. Тут главный прием – наддув: прокачивайте через ваш мотор вдвое больше воздуха (и соответственно горючего), и крутящий момент повысится, грубо говоря, в 1,5 раза – при тех же оборотах. И всего делов. Правда, нарастают тепловые нагрузки, возникают другие головные боли…но это уже другая история.

Вы нередко видите графики крутящего момента и мощности двигателей по оборотам – так называемая внешняя скоростная (внешняя – потому что при полном «газе», а скоростная – поскольку по скорости вращения вала) характеристика. Так вот, вам достаточно видеть одну из кривых – либо момента, либо мощности; все равно. Другая восстанавливается из первой – и наоборот. Их приводят обе просто для удобства, – чтобы вам не заниматься сложнейшими арифметическими расчетами


(синий график- момент, красный - лошадиные силы. График нашего соклубника Neo )
Скоростная характеристика бензиновой «четвёрки» Eclipse: наибольший крутящий момент при 4800 мин-1, влево он уменьшается. А ниже 1000 оборотов лучше вообще не опускаться...

То есть, связь между крутящим моментом, оборотами вала и мощностью двигателя однозначная – как между длиной основания треугольника, его высотой и площадью. Независимо от того, прямоугольный он, косоугольный и какого цвета.



Скоростная характеристика тягового электромотора,типо как у гибридного Lexus RX400h: наибольший крутящий момент при 0 оборотов!

И забавно, когда фирменный пресс-релиз прокалывается по простейшему правилу, – скажем, на web-сайте новоявленной калифорнийской компании DiMora Motorcar. По проекту ультра-люкс-седана Natalia, максимальная мощность 16-цилиндрового(!) мотора Volcano превышает 1200 л.с. Наибольший крутящий момент – 1220 Нм (900 футо-фунтов); однако тут не сходится. По сведениям от DiMora же, «отсечка» срабатывает на 6500 мин-1; значит, максимальная мощность достигается при 6000-6250. Но тогда наибольший момент ну никак не меньше 1400 Нм, а вернее все 1500. Арифметика: 2 х 2 = 4 и в солнечной Калифорнии.

Эластичность двигателя

Взгляните еще раз на кривую крутящего момента: она дает ключевую характеристику двигателя – его эластичность. Надо сказать, у автомобильных д.в.с. кривая неблагоприятная – то ли дело у газовой турбины, паровой машины, электромотора. Они выдают наибольший крутящий момент при низких оборотах – и даже при полной остановке вала. То есть, как лошадь: замедляют ход, напрягаются – и вытаскивают повозку. А попробуйте остановить вал Эклипсовской «четверки» или 12-цилиндрового двигателя Rolls-Royce – они попросту заглохнут.

График крутящего момента у обычного д.в.с. левее 1000об мин обычно и не рисуют; он не способен работать на оборотах ниже «холостого хода». Тогда как у электромотора кривая поднимается к 0 оборотов – примерно по гиперболе; исключительная эластичность. При увеличении нагрузки (крутой подъем и т.п.) электромотор теряет обороты – и увеличивает крутящий момент; сопротивляется до упора! А д.в.с. при падении частоты вращения (ниже «пиковых» по крутящему моменту) сопротивляется все слабее – и в конце концов останавливается. Две большие разницы, как говорят в Одессе.

Отсюда, кстати, идея «гибридных» бензин-электрических силовых агрегатов: тяговый э–мотор принимает на себя нагрузку именно там, где д.в.с. беспомощен. На самых «низах»; а обычно автомобильный двигатель выдает наибольший крутящий момент где-то при промежуточных частотах вращения вала. Причем у «остро» настроенного мотора пик момента сдвинут к высоким оборотам, а при низких он тянет слабо. Тогда и говорят о выраженном «подхвате»; ничего тут хорошего нет,тем более для стритовой машины.

Так что же все-таки важнее – крутящий момент или мощность? Ответ: разумеется, нужен крутящий момент – в широком диапазоне оборотов! В том числе и при самой высокой частоте вращения вала, – то есть, мощность.
Так что,перед тем,как вы задумаетесь о тюнинге своей машинки - задумайтесь,а что вы от неё хотите?Для каких целей? Ведь большая турбина даст больше мощи нам в итоге на верхах,но при этом диапазон крутящего момента по кривой оборотов сильно пропадает на низах и на средних оборотах.То есть большая турба позже спулится.Это касается и валов- чем больше угол -тем меньше мощи на низко-средних оборотах и больше на верхах. Вроде круто,да? Но вот для стритовой машины это катастрофа.Ведь для любителей погоцать по улочкам требуется более широкий диапазон крутящего момента,а не его огромный показатель в районе 6-9тыс об.Ведь не всякая улица + дорожный поток не позволят раскрутить мотор и не отпускать педаль газа... А отпустишь - потеряешь драгоценное время на новую раскрутку.
__________________
.

Скорость,дорога,ночная трасса,мы не такие как все, мы - другая раса...
Мощь оживает,люди смотрят нам вслед,Mitsubishi Eclipse - идеальный силуэт...(С)Я
Sebastian вне форума   Ответить с цитированием Перейти в начало страницы Перейти в конец страницы
Старый 29.09.2009, 19:52   #2
ksv
 
Аватар для ksv
 
Регистрация: 10.10.2007
Адрес: Украина, Николаев-Одесса
Имя: Сергей
Авто: eclipse 1.8to2.45L 20Gtd05h
Сообщений: 1,147
Немного дополню, статейкой.
Мощность или момент?
Стремление многих водителей увеличить мощность двигателя своего автомобиля вполне объяснимо. И дело, конечно же, не только в русском характере, который «любит быструю езду».
Более мощный двигатель делает машину более маневренной, а при правильном управлении и более безопасной. Но вот вопрос: что такое мощность? С чем ее «едят», как ее почувствовать?
Может быть, более мощный двигатель - это тот, который лучше «тянет»? В смысле, позволяет автомобилю быстрее разогнаться? Что ж, посмотрим...
Вот самый обычный двигатель - ничего примечательного. А вот - похожий, но только его максимальная мощность вдвое больше. Пробуем разгон с места: с первым - все ясно, а со вторым - проблема: не тянет! То есть отпускаем, как обычно, педаль сцепления, нажимаем на «газ» и... ничего. Прямо «керогаз» какой-то, не разгоняется!
Ничего удивительного в этом нет: форсированный двигатель, в данном случае имеющий вдвое большую максимальную мощность, не работает на низких оборотах, к которым привык водитель. Его сначала нужно разогнать - увеличить обороты тысяч до четырех, не меньше. Только там, «на верхах», т.е. на высоких оборотах, реализуются все преимущества такого мотора. А теперь попробуйте с такими оборотами покататься по городу, где и светофоры, и пробки!
Парадокс и только: в нашем примере двигатель слабый, а «тянет» лучше! Значит, мощность - это еще не все. Иными словами, значение максимальной мощности еще не говорит о преимуществах, эту величину необходимо как-то реализовать на практике.
Почему же «слабый движок» лучше тянет? Все просто - его крутящий момент оказался выше в большей части диапазона числа оборотов. Более того, значение крутящего момента у него имеет пологую характеристику, т.е. слабо изменяется по частоте вращения. А это сразу чувствует водитель - не надо «газовать», машина послушно отзывается на педаль акселератора.
Получается, что величина крутящего момента более значима в обычных условиях дорожного движения.
Попробуем охарактеризовать влияние крутящего момента двигателя на разгонную динамику автомобиля. Ускорение автомобиля (a) можно оценить, используя известный закон Ньютона. Пренебрегая в первом приближении силами трения, сопротивления и инерции вращающихся масс, запишем:
F= m•a , (1)
где F - сила «тяги», ускоряющая автомобиль; m - его масса.
В свою очередь, сила F связана с крутящим моментом Mк ведущего колеса следующим соотношением:
F = 2 MкDк ,
где Dк - диаметр колеса.
Крутящие моменты двигателя Me и колеса Mк связывает простое соотношение:
Mк = iт Me 2 ,
где iт - передаточное число трансмиссии. Подставляя значения F и Mк в уравнение (1), находим значение ускорения автомобиля:
a = MeiтmDк . (2)
Таким образом, чем выше значение крутящего момента двигателя, тем больше ускорение автомобиля. Если учесть, что величина крутящего момента не постоянна, а зависит от многих факторов (к примеру, от частоты вращения), то при разгоне ускорение автомобиля также будет изменяться.
А как же быть с мощностью? Этот параметр, по нашему мнению, более нагляден, когда нужно определить максимальную скорость, до которой способен разогнаться автомобиль. В этом случае мощность двигателя Ne идет на преодоление аэродинамического сопротивления Na, сил трения качения колес Nк и сопротивления в трансмиссии Nm:
Ne=Na+Nк+Nm . (3)
Другими словами, чем выше мощность двигателя, тем при прочих равных условиях может быть выше максимальная скорость автомобиля. При этом не следует забывать, что мощность двигателя, в свою очередь, зависит от частоты вращения коленвала и связана с величиной крутящего момента простой зависимостью:
Ne = Men9550 ,
где n - частота вращения коленвала (об/мин).
Крутящий момент и мощность двигателя передаются на колеса через трансмиссию. Очевидно, что разгонная динамика и максимальная скорость автомобиля зависят от передаточных чисел в КПП и в главной передаче. Эти параметры чрезвычайно важны для реализации всех потенциальных возможностей двигателя. Правильно подобранные передачи в трансмиссии способны значительно повысить эксплуатационные свойства автомобиля, а ошибки в их подборе могут нивелировать результат всех усилий по форсированию двигателя.
Так или иначе, а любая реконструкция двигателя с целью повышения его мощности - работа комплексная, основанная на четком представлении о том, что все-таки мы хотим получить, как это сделать и можно ли это сделать вообще. Здесь без знания рабочих процессов, протекающих в двигателе, никак не обойтись.
О чем говорит теория?
Чтобы окончательно разобраться с моментом и мощностью двигателя, обратимся непосредственно к теории его работы. При работе двигателя давление в его цилиндрах изменяется от минимума на такте впуска до максимума при сгорании топлива в начале рабочего хода. Характер изменения давления в цилиндре можно изобразить графически, связав его с текущим объемом цилиндра, который меняется от минимума, равного объему камеры сгорания (Vкс) в верхней мертвой точке (ВМТ), до максимума - полного объема цилиндра (Vкс+Vh) в нижней.
Это известная индикаторная диаграмма - зависимость давления в цилиндре Р от его текущего объема V В таких координатах, гласит теория, площадь под кривой представляет собой работу, совершенную в данном цикле.
Верхняя часть индикаторной диаграммы, ограниченная кривыми процессов сжатия и расширения (рабочего хода) в цилиндре, - это так называемая индикаторная работа цикла Li, т.е. работа, вычисленная по индикаторной диаграмме. Нижняя часть - под кривыми впуска и выпуска - работа насосных ходов Lнх. Если вычесть из полезной работы Li работу насосных ходов Lнх, а также работу Lм, затраченную на преодоление сил трения и механического сопротивления (в том числе, на привод агрегатов), то получим эффективную работу цикла двигателя:
Le=Li-Lнх-Lм . (4)
Величина работы не наглядна и мало что может рассказать о процессах, протекающих в двигателе. Поэтому в теории часто оперируют удельными параметрами. К примеру, если работу, совершенную за цикл, отнести к объему цилиндра Vh, можно получить удельный параметр, удобный для сравнения разных двигателей. Это - так называемое среднеэффективное давление цикла двигателя:
Ре = LeVh . (5)
Далее легко вычислить значения крутящего момента Me:
Me =79,6 iVh Pe (6)
и мощности двигателя Ne:
Ne = Men9550 = iVh Pen120 , (7)
где i - число цилиндров.
Итак, некоторые зависимости получены, попробуем их проанализировать.
С точки зрения практики
Первое, что бросается в глаза: крутящий момент явно не зависит от частоты вращения коленвала, а определяется лишь объемом двигателя iVh и среднеэффективным давлением Pe. Очевидно, имеются два пути повышения Me: увеличение объема двигателя и повышение его Pe.
С объемом все понятно - чем больше, насколько позволяет конструкция двигателя, тем лучше. С параметром Pe «бороться» сложнее. Но индикаторная диаграмма подсказывает, что параметр Pe - это давление, которое можно повысить, увеличив степень сжатия. Правда, резервов тут немного - возможности этого способа ограничены детонацией.
Можно подойти и с другой стороны. Чем больше топливовоздушной смеси мы «загоним» в двигатель, тем, очевидно, больше тепла выделится при сгорании топлива в цилиндре и тем выше будет давление в нем.
Улучшить наполнение цилиндра смесью можно путем увеличения проходных сечений и изменения формы впускных каналов, клапанов и седел, доработки камеры сгорания, а также расширением фазы (продолжительности) впуска. Положительно повлияют и мероприятия, направленные на снижение гидравлического сопротивления впускного тракта: ликвидация «уступов» и острых углов в местах стыка деталей, установка воздушного фильтра с низким сопротивлением.
Кардинальным средством повышения наполнения, а следовательно, и давления в цилиндре следует признать наддув. Однако этот способ сложно реализовать в «тюнинговой» практике, т.к. он связан с большим объемом переделок в двигателе.
Значительное влияние на величину Pe оказывает работа выпускной системы. «Неправильный» выхлоп может «задавить» двигатель, повысив давление в цилиндре на такте выпуска, что, согласно индикаторной диаграмме, приведет к росту работы насосных ходов. Кроме того, большое сопротивление выхлопной системы препятствует наполнению цилиндра смесью, поскольку не все выхлопные газы успеют покинуть цилиндр и займут часть объема свежей смеси. В этой связи не менее важны проходные сечения выпускных каналов, размеры и форма тарелок и седел клапанов, а также продолжительность (фаза) выпуска.
Снова обратимся к формуле (4) работы цикла двигателя. Очевидно, работа, затрачиваемая на преодоление механических потерь, - «вещь» вредная, поскольку уменьшает значения Pe, Me и Ne. Но и тут есть резервы. Можно снизить потери на преодоление сил трения в цилиндропоршневой группе целым рядом мероприятий: снижением массы поршней и шатунов, уменьшением размера юбки поршней и толщины поршневых колец, переносом места фиксации шатуна от осевого смещения в бобышки поршня и др. Кроме того, имеет значение и снижение разбрызгивания масла коленвалом путем специального направления масла, сливаемого из головки блока, установки маслоотражающих экранов и т.д. Правда, эти мероприятия, в основном, эффективны на высоких оборотах, когда потери на преодоление трения особенно велики.
Перечень возможных переделок можно продолжать, однако не стоит надеяться, что отдельно доработанный узел или деталь сразу даст прибавку мощности или крутящего момента процентов этак на ...дцать. Простой пример: увеличиваем объем цилиндров на 20%. Согласно формуле (6), это должно привести к пропорциональному повышению значения крутящего момента. Но не приведет! В двигателе все взаимосвязано - оставленные без изменения системы впуска, выпуска и управления не обеспечат хорошего наполнения, сгорания топлива и очистки (продувки) цилиндров увеличенного объема. В результате снизится значение Pe, и реальная прибавка крутящего момента окажется раза в полтора-два меньше, да и то лишь на малых и средних оборотах.
Кстати, о системе управления. Так называемый «чип-тюнинг» обеспечивает прибавку мощности всего на 5-7%. В то же время после «глубокого» тюнинга механической части двигателя настройка системы управления может дать намного больший эффект.
Итак, пути повышения мощности двигателя определены. Кажется, осталось запастись соответствующими деталями и - к двигателю. Однако не будем торопиться - сделать это мы всегда успеем.
Еще немного теории
Как мы уже отметили, в двигателе все взаимосвязано. На практике это означает, что изменение в одном узле ведет к перемене всего рабочего процесса: от воздухозаборника до среза выхлопной трубы. Причем на разных режимах любое вмешательство оказывает различное воздействие. Более того, то, что хорошо на одном режиме, может оказаться плохо на другом.
Проведем такой эксперимент: разгон автомобиля от оборотов холостого хода двигателя до максимальных. Реально это выглядит следующим образом: скорость 30 км/час, 4-я передача, «газ в пол». Вначале «тяги» почти нет - автомобиль едва разгоняется. Затем ускорение увеличивается, достигая максимума, и снова уменьшается, пока вблизи максимальных оборотов двигатель не «зависает».
Что это? На практике мы повторили испытания так называемой внешней скоростной характеристики двигателя - зависимости Me и Ne от частоты вращения коленвала при полностью открытой дроссельной заслонке.
Заметили, что наибольшая «тяга» - где-то на средних оборотах? Максимум крутящего момента находится здесь же. А вот при уменьшении или увеличении частоты вращения момент падает. Почему?
Причин этого явления несколько. Отметим, что максимумы значений Pe и Me в области средних оборотов не случайны, поскольку это - наиболее часто используемые в эксплуатации режимы: конструкторы намеренно «настраивают» все системы двигателя именно на средние обороты.
Что такое «настройка»? Попробуем объяснить. Периодичность (1 раз за 2 оборота коленвала) процессов впуска и выпуска в цилиндре вызывает значительные колебания давления и скорости газа в каналах двигателя. Поток газа, движущегося по каналу, обладает частотой собственных колебаний, зависящей от температуры газа и геометрии канала. Так вот, можно подобрать геометрию каналов, в первую очередь, их длину (т.е. настроить системы впуска-выпуска) таким образом, чтобы в период впуска повысить давление перед впускным клапаном, снизив его в цилиндре, а в период выпуска снизить давление на выпуске за выпускным клапаном.
В результате наполнение цилиндров увеличится (это явление называется газодинамическим наддувом), одновременно улучшится и очистка цилиндров от остаточных газов в конце выпуска.
Кроме того, на диапазон средних оборотов одновременно «настраивают» и фазы газораспределения: опережение открытия относительно мертвых точек впускного и выпускного клапанов, их перекрытие (длительность одновременного открытия) и продолжительность впуска и выпуска по углу поворота коленвала. Именно фазы газораспределения в сочетании с правильно подобранной геометрией каналов и дают максимум наполнения цилиндров в выбранном, однако довольно узком, диапазоне частоты вращения.
Естественно, отклонение в сторону меньших оборотов делает продолжительность фаз «избыточной»: возникает заброс выхлопных газов во впускную систему, ухудшается очистка и наполнение цилиндров. При повышении же оборотов фазы оказываются слишком «узкими» и ограничивают как очистку, так и наполнение цилиндров. Результат - значения Pe и Me падают как при уменьшении, так и при увеличении числа оборотов. Причем в области больших частот вращения величина Me дополнительно снижается за счет быстрого роста механических потерь.
Мощность двигателя Ne, также как и его момент Me, имеет максимумы, которые за счет влияния частоты вращения (см. формулу 7) сдвинуты в сторону повышенных оборотов.
Теперь, зная характер изменений значений Me и Ne от частоты вращения, попробуем изменить «настройки». В первую очередь «расширим» фазы газораспределения. Максимумы значений Me и Ne переместятся в область более высоких оборотов, при этом заметно увеличится максимальное значение Ne. Именно этот эффект и лежит в основе форсирования двигателя по частоте вращения: так строят, к примеру, все спортивные моторы.
От идеи до практики
Итак, основные закономерности мы выяснили. Попробуем теперь выбрать схему, по которой можно форсировать двигатель.
Очевидно, первое, что надо решить, - насколько необходимо увеличить объем цилиндров. Если поставлена цель - достичь максимального эффекта при форсировании, то объемом пренебрегать нельзя, даже если в нашем распоряжении не так много возможностей: повышение мощности и момента прямо пропорционально объему цилиндров.
Следующее по значимости - это фазы газораспределения. Необходимо сделать выбор: «строим» ли мы «скоростной» двигатель, который будет «раскручиваться» на высоких оборотах, или «моментный», для работы на средних оборотах. Это, без сомнения, зависит от темперамента водителя и стиля езды. На этом этапе предстоит выбор распределительного вала для нашего мотора - именно параметры вала определяют характер изменения момента и мощности по частоте вращения коленвала.
Затем все узлы и детали двигателя «настраиваются» на объем двигателя, но главное, на соответствие выбранному распределительному валу. Другими словами, весь клапанный механизм, каналы впуска и выпуска, цилиндропоршневая группа - все «подстраивается» под характеристики распределительного вала.
Какой бы мотор ни получился в результате - это будет уже новый, другой мотор. И им надо по-другому управлять. То есть по-иному, но точно регулировать состав топливно-воздушной смеси и угол опережения зажигания. Поэтому следующий этап работы - настройка системы управления двигателем. Без этого новый двигатель не только не «выдаст» всех своих возможностей, но может проиграть своему стандартному аналогу. Особенно это касается двигателей с электронными системами впрыска топлива.
И, наконец, трансмиссия. Ее, возможно, придется дорабатывать, к примеру, изменять передаточные числа главной передачи или отдельных передач. Ведь двигатель, какой бы хороший он ни получился, работает не сам по себе, а вращает колеса автомобиля.
Реализация на практике всех этих этапов - задача непростая, и ее сложность возрастает прямо пропорционально росту мощности и крутящего момента, которые мы хотели бы получить. Чтобы добиться хороших результатов, необходимы опыт и знания, специальный инструмент и приспособления, станочная база, детали и комплектующие. Кроме того, результаты работы необходимо проконтролировать не субъективно, по ощущениям водителя, а объективно, испытав двигатель на специальном стенде.
ksv вне форума   Ответить с цитированием Перейти в начало страницы Перейти в конец страницы
Ответ
Опции темы

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
1G Сцепа и все что с ней связано! Ерлан Обслуживание и Эксплуатация DSM 2 20.03.2018 22:37
FIA F1 - и всё что с ней связано costarika Новости и мир авто спорта 482 08.09.2013 00:57
1G ECU (блок управление двигателя) и все что с ним связано kasem Управление двигателем 8 02.04.2012 21:43
Живу с этим уже четыре года 52rus.ru Обслуживание и Эксплуатация 3Si 6 04.03.2009 10:30
3G ECU и всё что с нм связано costarika Управление двигателем 0 16.04.2007 17:23

Powered by vBulletin® Copyright ©2000 - 2024, vBulletin Solutions, Inc. Перевод: zCarot
Copyright © 2004-2021, DSM Клуб